keras及神经网络,以简单实例入门

由浅入深,深入浅出。还给你reference了很多,如果你想要更多。

迄今为止看到最棒的,最值得follow的入门tutorial:

https://realpython.com/python-keras-text-classification/

↑由浅入深,深入浅出。还给你reference了很多,如果你想要更多。

重点中的重点,得记录一下,好多csdn的blog都不负责地只贴图,不讲咋看图:

Accuracy and loss for baseline model You can see that we have trained our model for too long since the training set reached 100% accuracy. A good way to see when the model starts overfitting is when the loss of the validation data starts rising again. This tends to be a good point to stop the model. You can see this around 20-40 epochs in this training. 机器翻译:您可以看到,自从训练集达到100%的准确率以后,我们对模型的训练时间太长了。查看模型何时开始过拟合的一个好方法是验证数据的损失何时开始再次上升。这往往是一个停止模型的好点。你可以在这个训练中看到20-40个迭代周期。

这也很重要:

扩展阅读:

Published At
comments powered by Disqus